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Figure 1: 4DNeX generates 6D video from a single image to enable 4D scene creation and
novel-view video rendering.

ABSTRACT

We present 4DNeX, the first feed-forward framework for generating 4D (i.e., dy-
namic 3D) scene representations from a single image. In contrast to existing
methods that rely on computationally intensive optimization or require multi-frame
video inputs, 4DNeX enables efficient, end-to-end image-to-4D generation by fine-
tuning a pretrained video diffusion model. Specifically, 1) to alleviate the scarcity
of 4D data, we construct 4DNeX-10M, a large-scale dataset with high-quality 4D
annotations generated using advanced reconstruction approaches. 2) we introduce
a unified 6D video representation that jointly models RGB and XYZ sequences,
facilitating structured learning of both appearance and geometry. 3) we propose
a set of simple yet effective adaptation strategies to repurpose pretrained video
diffusion models for 4D modeling. 4DNeX produces high-quality dynamic point
clouds that enable novel-view video synthesis. Extensive experiments demonstrate
that 4DNeX outperforms existing 4D generation methods in efficiency and gener-
alizability, offering a scalable solution for image-to-4D modeling and laying the
foundation for generative 4D world models that simulate dynamic scene evolution.

1 INTRODUCTION

The images we capture are 2D projections of the 4D (i.e., dynamic 3D) physical world. Creating
a 4D scene from such 2D observations, particularly from a single image, is a highly challenging
yet compelling task. As a core capability in generative modeling, image-to-4D generation lays the
foundation for building 4D world models that can predict and simulate dynamic scene evolution,
enabling a wide range of applications in AR/VR, film production, and digital content creation.

Existing approaches for 4D scene modeling can be broadly classified into two categories. The first
comprises 4D generation methods, which typically adopt representations such as Neural Radiance
Fields (NeRF) Mildenhall et al. (2022) or 3D Gaussian Splatting (3DGS) Kerbl et al. (2023). These
methods can be further divided into feed-forward Ren et al. (20252); Wu et al. (2024b); Zhao et al.
(2024); Sun et al. (2024b) and optimization-based variants Liu et al. (2025); Yu et al. (2024a); Zheng
et al. (2024); Bahmani et al. (2024); Zhao et al. (2023); Ren et al. (2023). However, they either
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require video input or rely on object-centric, computationally intensive optimization procedures. The
second category includes dynamic Structure-from-Motion (SfM) approaches ( );

( ); ( ); ( ); ( ), which estimate dynamic 3D
structures such as time-varying point clouds from video sequences. However, these methods remain
incapable of generating 4D representations from a single image.

To this end, we aim to develop a feed-forward framework for 4D scene generation from a single
image. A straightforward solution is to fine-tune a pretrained video diffusion model. However, this
approach presents two core challenges: 1) how to mitigate the scarcity of 4D data, and 2) how to
adapt the pretrained model in a simple and efficient way.

For the first challenge, we curate 4DNeX-10M, a large-scale dataset comprising both static and
dynamic scenes, with high-quality 4D annotations generated from monocular videos using state-of-
the-art reconstruction methods ( ; 0); ( ); ( ). To
ensure geometric accuracy and scene diversity, we apply careful data selection, pseudo-annotation
generation, and multi-stage filtering. To address the second challenge, we first introduce a unified
6D video representation that models RGB and XYZ sequences jointly, enabling the structured
modeling of both appearance and geometry. We then systematically investigate different fusion
strategies between the two modalities and show that width-wise fusion achieves the most effective
cross-modal alignment. Moreover, we incorporate a set of carefully designed techniques, including
XYZ initialization, XYZ normalization, mask design, and modality-aware token encoding, to adapt
pretrained video diffusion models in a simple manner while preserving their generative priors.

To summarize, we present 4DNeX, the first feed-forward framework for image-to-4D generation
(Fig. 1). We qualitatively demonstrate the plausibility of the generated dynamic point clouds.
Furthermore, to validate their utility, we leverage TrajectoryCrafter ( ) to transform
the generated 4D point clouds into novel-view videos, achieving comparable results to existing
4D generation methods. In addition, we perform comprehensive ablation studies to validate the
effectiveness of our proposed fine-tuning strategies.

Our main contributions can be summarized as follows:

* We propose 4DNeX, the first feed-forward framework for image-to-4D generation, capable of
producing dynamic point clouds from a single image.

* We construct 4DNeX-10M, a large-scale dataset with high-quality 4D annotations.

* We introduce a set of simple yet effective fine-tuning strategies to adapt pretrained video diffusion
models for 4D generation.

2 RELATED WORK

2.1 OPTIMIZATION-BASED 4D GENERATION

Recent work has explored optimization-based methods for 4D generation. Leveraging the priors
of pre-trained diffusion models ( ); ( ); ( ), they
optimize 3D and 4D representations ( ); ( );

( ); ( ) using the synthesized dynamic multi-view images or score distillation
sampling ( ). A core challenge for these approaches lies in ensuring the temporal
and spatial consistency of the acquired guidance. Some studies ( );

(2024); (2024); (2023); ( ); (2024);

( ); ( ) build upon 3D representations optimized from static images and
incorporate dynamic information derived from video diffusion models to refine 3D into 4D. Other
works ( ); ( ); (2023); ( ) ( )

( ) initiate from video generation, aiming for cross-view consistency to facilitate the
optimization of 4D representations. The most recent method, Free4D ( ), first generates
multi-view videos in a training-free manner through a set of consistency-preserving designs, and
then optimizes a 4D representation. However, it is limited to relatively small camera and scene
motion. In addition to the inherent challenge of maintaining consistent guidance, optimization-based
methods also suffer from high computational cost, long runtime, and instability caused by multi-stage
optimization.In this work, we propose a feed-forward 4D generation framework that produces 4D
representations, offering a more efficient and scalable alternative.
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2.2 FEED-FORWARD 4D GENERATION

Feed-forward 4D generation methods aim to directly predict 4D representations from input via
a single forward pass, avoiding the computational cost and inconsistency of optimization-based
pipelines. This enables efficient, end-to-end learning of spatiotemporal structures. Some works

( ); ( ); ( ); ( ) focus on generating temporally
consistent and viewpoint-controllable videos. For example, GenXD ( ) concatenates
camera and image conditions and employs multi-view-temporal fusion modules, but still requires
post-optimization to obtain explicit 4D geometry. DimensionX ( ) uses motion-specific
LoRA modules for dynamic view synthesis, but lacks support for fully free-view generation. Other
methods aim to directly generate 4D representations. L4GM ( ) extends LGM

( ) by predicting per-frame 3D Gaussian splats and using temporal self-attention to ensure
consistency. Cat4D ( ) finetunes CAT3D ( ) on pseudo-4D data,
but may struggles to generalize beyond specific video generation sources. TesserAct
( ) tackles 4D prediction in embodied robotics settings by jointly predicting RGB, depth, normals,
and motion from a single image. However, it targets task-specific representations (e.g., surface
normals), relies on heavy multitask learning, and is not designed for general, in-the-wild scenarios.
In contrast, we aim to efficiently generate general-purpose 4D representations from a single image
by leveraging pre-trained video diffusion models and introducing a transferable training paradigm.
Another research line includes dynamic Structure-from-Motion (SfM) approaches ( );

( ); (2025); (2025); ( ); (2025),

which recover time-varying 3D structures, such as dynamic point clouds, from multi-frame videos.
However, these methods cannot generate 4D representations from a single image. Fundamentally,
they focus on reconstructing dynamic geometry from dense video input, while we tackle the more
challenging task of jointly generating appearance and geometry sequences from a single image.

2.3 VIDEO GENERATION MODEL

Pre-trained video generation models ( ;)5 ( ); ( ) have
demonstrated remarkable capabilities and underpin numerous downstream tasks. CogVideo

( ) and CogVideoX ( ) employ specifically designed expert transformers and
3D full attention mechanisms to achieve high-quality text-to-video generation. Building upon text-to-
video synthesis, DynamiCrafter ( ) enables the animation of input images at arbitrary
positions within a video. Beyond classical video generation tasks, significant efforts have focused on
generating videos from target viewpoints. SynCamMaster ( ) and Collaborative Video
Diffusion ( ) encode camera viewpoints and leverage multi-view synchronization to
generate paired videos based on text-to-video models. Furthermore, several works aim to integrate
the capabilities of video generation models into the 3D domain, particularly for post-processing
multi-view reconstruction results. ViewCrafter ( ) introduces video generation models
to the 3D domain to refine lossy reconstructions from different viewpoints, yielding complete novel
view images. TrajectoryCrafter ( ) introduces a data construction paradigm for handling
novel view synthesis of dynamic scenes. Our approach utilizes TrajectoryCrafter ( ) to
process the generated 4D point clouds, transforming them into novel videos with target viewpoints.

3 4DNEX-10M

To address the data scarcity in 4D generative modeling, we introduce 4DNeX-10M, a large-scale
hybrid dataset tailored for training feed-forward 4D generative models. It aggregates videos from
public sources and internal pipelines, encompassing both static and dynamic scenes. All data under-
goes rigorous filtering, pseudo-annotation, and quality assessment to ensure geometric consistency,
motion diversity, and visual realism. As shown in Figure 2, our proposed dataset encompasses
a highly diverse range of scenes, including indoor and outdoor environments, distant landscapes,
close-range settings, high-speed scenarios, static scenes, and human-inclusive situations. Furthermore,
4DNeX-10M encompasses a wide variety of lighting conditions and a profusion of human activities.
Meanwhile, we provide precise 4D pointmaps and camera trajectories of these corresponding scenes.
In total, 4DNeX-10M contains over 9.2 million video frames with pseudo annotations. For data
curation, as illustrated in Figure 3, we curate this data using an automated acquisition and filtering
pipeline comprising several stages: 1) data cleaning, 2) data captioning, and 3) 3D/4D annotation.
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Figure 2: Visualization of 4DNeX-10M Dataset. Our dataset spans a wide range of dynamic
scenarios, including indoor, outdoor, close-range, far-range, static, high-speed, and human-centric
scenes. The word cloud summarizes common visual concepts captured in the dataset, while the 4D
point clouds and camera trajectories demonstrate the spatial precision of our pseudo-annotations.

3.1 DATA PREPROCESSING

The foundation of 4DNeX-10M is built upon a variety of datasets, each contributing distinct scene
characteristics and motion types.

Data Sources. We collect monocular videos from several sources. DL3DV-10K (DL3DV) Ling et al.
(2024) and RealEstate 10K (RE10K) Zhou et al. (2018) offer static indoor and outdoor videos with
diverse camera trajectories. The Pexels dataset provides a large pool of human-centric stock videos
with auxiliary metadata such as movements, OCR, and optical flow. The Vimeo Dataset, selected
from Vchitect 2.0 Fan et al. (2025), contributes in-the-wild dynamic scenes. Synthetic data sourced
from Vbench Huang et al. (2024) contains dynamic sequences using video diffusion models (VDM).

Initial Filtering. For large-scale sources like Pexels, we apply metadata filtering, including optical
flow, motion, and OCR, to eliminate non-compliant videos, such as those exhibiting excessive motion
blur or text-saturated videos. Across all data sources, brightness filtering is applied based on average
luminance (0.299R + 0.587G + 0.114B) to discard videos with extreme illumination conditions.

Video Captioning. For datasets without textual annotations (e.g., DL3DV-10K and RE-10K), we
use LLaVA-Next-Video Zhang et al. (2024b) to generate captions. We sample 32 frames uniformly
per video (or clip) and feed them to the LLaVA-NeXT-Video-7B-Qwen2 model with the prompt:
"Please provide a concise description of the video, focusing on the main subjects and the background
scenes." For scenes with consistent content (e.g., DL3DV-10K, Dynamic Replica), we generate one
caption per video. For RealEstate10K, we split each video into clips and caption them separately.

3.2 STATIC DATA PROCESSING

To learn strong geometric priors, we curate static monocular videos from DL3DV-10K Ling et al.
(2024) and RE-10K Zhou et al. (2018). These cover a wide range of environments including homes,
streets, stores, and landmarks, with varied camera trajectories providing rich multi-view coverage.

Pseudo 3D Annotation. As these datasets lack 3D ground-truth, we employ DUSt3R Wang et al.
(2024), a stereo reconstruction model, to generate pseudo point maps. For each video, DUSt3R is
applied exhaustively over view pairs to form a view graph, followed by global fusion (per the original
paper) to recover a consistent scene-level 3D structure.
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Figure 3: Data Curation Pipeline. The video data is collected from various sources and then selected
by video filtering during Data Cleaning. The selected data is captioned via LLaVA-Next-Video model
in Video Captioning. The selected data is processed and finally filtered out the video with high-quality
annotation during 3D/4D Annotation. Data statistics is also provided in bottom right.

Quality Filtering. To ensure high-quality annotations, we define two metrics using the confidence
maps from DUSt3R: 1) the Mean Confidence Value (MCV), averaging pixel-wise confidence scores
over all frames, and 2) the High-Confidence Pixel Ratio (HCPR), representing the proportion of
pixels exceeding a threshold 7. We select the top-r% of clips for each metric and retain over 100K
high-quality 28-frame clips with reliable pseudo point map annotations for static training.

3.3 DyYNAMIC DATA PROCESSING

To enrich 4DNeX-10M with dynamic content, we collect monocular videos from Pexels, VDM, and
Vimeo. These datasets contain diverse real-world scenes with motion and depth variation but lack
ground-truth geometry.

Pseudo 4D Annotation. We employ MonST3R ( ) and MegaSaM ( ),
two advanced dynamic reconstruction models, to generate pseudo 4D annotations. Each model
recovers temporally coherent 3D point clouds and globally aligned camera poses from monocular
videos, enabling the construction of time-varying scene representations.

Multi-Stage Filtering. To select high-quality clips, we apply three sequential filtering strategies.
First, we use the final alignment loss in the global fusion stage, which reflects multi-view consistency
and flow agreement with RAFT ( ), to filter out low-quality reconstructions. Second,
we assess camera smoothness (CS) by computing frame-wise velocity and acceleration from camera
translations, and estimate local trajectory curvature as:

Vi1 — il
visal? + [[vil* + €
Clips with low average velocity, acceleration, and curvature are retained. Third, we apply the same
Mean Confidence Value (MCV) and High-Confidence Pixel Ratio (HCPR) used in the static pipeline.
After filtering, we retain approximately 32K clips from the MonST3R-processed set, 5K clips from
VDM, and 27K from Pexels, and over 80k clips from MegaSaM-processed set. Together, these yield a
total over 110K high-quality clips with pseudo 4D annotations, enabling robust modeling of dynamic
3D scenes across a wide range of motions and appearances.

Ky = e > 0. (1
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Figure 4: Comparison of fusion strategies for joint RGB and XYZ modeling. We explore five
fusion strategies and analyze their impact on model compatibility and cross-modal alignment.

4 4DNEX

4.1 PROBLEM FORMULATION

Given a single image Iy € R#*W >3 we aim to construct a 4D (i.e., dynamic 3D) representation of
the underlying scene geometry. This task can be formulated as learning a conditional distribution
over a sequence of dynamic point clouds:

p (P} | o), )

where {Pt}t ! denotes the sequence of dynamic point clouds. However, directly modeling point
clouds is challengmg due to their highly unstructured nature. To address this, inspired by

( ), we adopt a pixel-aligned point map representation, XYZ, where each frame X XY# € R#xWx3
encodes the 3D coordinates of each pixel in the global coordinates. This format provides a structured
and learnable structure, making it compatible with existing generative models. Instead of directly
modeling { P; }, we reformulate the problem as predicting paired RGB and XYZ image sequences:

p ((XF98, XYY 1 o). 3
Accordingly, the joint distribution can be also factorized as:
p ((XFOPYS XY A5 T o) - “)

Therefore, a 4D scene can be effectively represented using a 6D video composed of paired RGB and
XYZ sequences. This simple and unified representation offers two key advantages: it enables explicit
3D consistency supervision through pixel-aligned XYZ maps, and eliminates the need for camera
control, facilitating scalable and robust 4D generation.

To model this distribution, we adopt Wan2.1 ( ), a video diffusion model trained
under the flow matching ( ) framework. We extend its image-to-video capability to
generate 6D videos as V = {X[\¢B XXVZ1T- L v/ is first encoded into a latent space via a VAE
encoder £: x; = £(V), and interpolating with a noise latent xg ~ N (0, I):

= (1 —t)xo +txy, t~U(0,1). Q)
And a velocity predictor u is trained to regress the velocity between endpoints:
Ly =E |:||U($t7 Cimgs Coxts 1) — (21 — xo)llﬂ , (6)

where cing and ¢y, denote the image and text condition embeddings. This formulation enables
efficient learning of temporally coherent and geometrically consistent 6D video sequences.
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Figure 5: Comparison of spatial fusion strategies. We compare frame-, height-, and width-wise
fusion in terms of the interaction distance between RGB and XYZ tokens.

4.2 FUSION STRATEGIES

To finetune the video diffusion model for joint RGB and XYZ generation, a key challenge is designing
an effective fusion strategy that enables the model to leverage both modalities. Our goal is to exploit
the strong priors of pretrained models through simple yet effective fusion designs. Motivated by
prior work, latent concatenation is a widely adopted technique for joint modeling. We systematically
explore fusion strategies across different dimensions, as illustrated in Fig. 4.

Channel-wise Fusion. A straightforward approach is to concatenate RGB and XYZ along the
channel dimension, and insert a linear layer (a.i) or a modality switcher (a.ii) to adapt the input and
output formats. However, this strategy disrupts the input and output distributions expected by the
pretrained model, which undermines the benefits of pretraining. It typically requires large-scale data
and substantial computational resources to achieve satisfactory performance.

Batch-wise Fusion. To maintain pretrained distributions, this strategy treats RGB and XYZ as
separate samples and uses a switcher to control the output modality (b.7). While it preserves unimodal
performance, it fails to establish cross-modal alignment. Even with additional cross-domain attention
layers (b.ii), the modalities remain poorly correlated.

Frame-/Height-/Width-wise Fusion. These strategies concatenate RGB and XYZ along the
frame (c), height (d), or width (e) dimensions, preserving the distributions of the pretrained model
while enabling cross-modal interaction within a single sample. We analyze them from the perspective
of token interaction distance. Intuitively, shorter interaction distance between corresponding tokens
makes it easier for the model to learn cross-modal alignment. As shown in Fig. 5, width-wise fusion
yields the shortest interaction distance, leading to more effective alignment and higher generation
quality, as confirmed by our experiments (Sec. 5.3).

4.3 NETWORK ARCHITECTURE

As illustrated in Fig. 6, our framework takes a single image Iy € R¥*W >3 and an initialized XYZ
map X "t ¢ REXWX3 a5 conditions. Both are encoded by a frozen VAE encoder and concatenated
along the width dimension. This fused condition is then combined with a noise latent 2, and a binary
mask M along the channel dimension, and fed into a pretrained DiT with LoRA tuning. The output
latent is decoded by a VAE decoder to generate paired RGB and XYZ video sequences. A lightweight
post-optimization step further recovers camera parameters and depth maps from the predicted outputs.

XYZ Initialization. We initialize the first-frame XYZ map X using a sloped depth plane.
Specifically, we define a normalized 2D coordinate grid over the range [—1, 1]? and compute the
initial XYZ values as:

L 2j 2 2
Xinit — -1 -1 —-1).
vJ (Wl "H-1 T H-1 > 7
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Figure 6: Overview of 4DNeX. Given a single RGB image and an initialized XYZ map, 4DNeX
encodes both inputs with a VAE encoder and fuses them via width-wise concatenation. The fused
latent, combined with a noise latent and a guided mask, is processed by a LoRA-tuned Wan-DiT
model to jointly generate RGB and XYZ videos. A lightweight post-optimization step recovers
camera parameters and depth maps from the predicted outputs.

This results in a sloped plane where depth values gradually increase from the bottom to the top of the
image, reflecting common depth priors in natural scenes (e.g., sky regions appearing farther away).
Such initialization provides a stable starting point for geometry learning.

XYZ Normalization. Since the VAE is pretrained on RGB images, directly encoding XYZ inputs
with different distributions can cause instability and suboptimal performance. To mitigate this issue,
inspired by Chen et al. (2025) , we apply a modality-aware normalization strategy to adapt the XYZ
latent to the pretrained VAE’s distributional priors. Specifically, we compute the mean p and standard
deviation o of XYZ latent across the training dataset, and normalize the encoded representation as:
=t ®)
o
where x denotes the XYZ latent. Before passing into the VAE decoder, we perform de-normalization
to recover the original scale:

T=2I- -0+ p. )

Mask Design. Following Wan et al. (2025), we introduce a guided mask M € [0, 1]7*#>W where
M ; ; = 1indicates a known pixel and M; ; ; = 0 indicates a pixel to be generated. Since we use an
approximate initialization for the first-frame XYZ map, we assign a soft mask:

Mg 7 =05, Vi,j, (10)
which encourages the model to refine the initial geometry during generation.

Modality-Aware Token Encoding. To preserve pixel-wise alignment across modalities during joint
modeling, we adopt a shared rotary positional encoding (RoPE) Su et al. (2024) for RGB and XYZ
tokens. To further distinguish their semantic differences, we introduce a learnable domain embedding.
Given RGB and XYZ token sequences xR xXYZ ¢ RL*D we apply the following encoding:

2RCB RoPE(wRGB) + erGB,

2*YZ « RoPE(z*Y?) + exyz,

(11

where RoPE(+) denotes the shared rotary positional encoding, and ergp,exyz € R*D are
learnable domain embeddings broadcasted across the sequence.

Post-Optimization. Since our method produces XYZ videos that represent dense 3D points in global
coordinates, we can recover the corresponding camera parameters C' = (R, ¢, K') and depth maps d
for the generated RGB frames via a lightweight post-optimization step. Specifically, we minimize the
reprojection error between the generated and back-projected 3D coordinates:

. ~ ~ 2
i > [la5 e =l (12)
)
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Figure 8: Novel-view video results on in-the-wild data.

where (ji( Y'Z denotes the generated 3D coordinate, and G;* %

. 5 © 1s computed by back-projecting the
depth value into 3D space:

Gy =[RIE T (diy - [,5.1]7). (13)

This optimization is computationally efficient and can be parallelized across views, producing
physically plausible and geometrically consistent estimates of camera poses and depth maps.

5 EXPERIMENTS

5.1 SETTING

Baselines. Following Liu et al. (2025), we compare our method with existing 4D generation
approaches, which can be grouped into two categories: text-to-4D and image-to-4D methods. For
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Figure 9: Qualitative comparison. Our method generates results with higher consistency, better
aesthetics, and notably larger motion than existing 4D generation methods Zhao et al. (2023); Yu
et al. (2024a); Liu et al. (2025).
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Figure 10: Ablation study on fusion strategies. We compare channel-wise (a), batch-wise (b),
frame-wise (c), height-wise (d), and our width-wise fusion (e) for RGB and XYZ inputs.

text-to-4D, we compare against 4Real Yu et al. (2024a), a state-of-the-art method in this category. For
image-to-4D, we benchmark against the state-of-the-art Free4D Liu et al. (2025), the feed-forward
method GenXD Zhao et al. (2024), and the object-levle approach Animate124 Zhao et al. (2023). For
text-to-4D methods, we first generate an image from the input text prompt and then convert it into
the image-to-4D setting. To ensure fairness, we use the same single-image or text prompt across all
methods during evaluation.

10
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Table 1: 4D Generation Results on VBench ( ). We report the consistency,
dynamics, and aesthetics of the generated videos, together with the inference time of each method.

Method | Consistency T Dynamic T Aesthetic T Time (min) |
4Real ( ) 95.7% 32.3% 50.9% 90
Free4D ( ) 96.0% 47.4% 64.7% 60
Ours 96.4% 58.0% 59.5% 15
Animate124 ( ) 90.7% 45.4% 42.3% \
Free4D ( ) 96.9% 40.1% 60.5% 60
Ours 97.2% 58.3% 53.0% 15
GenXD ( ) 89.8% 98.3% 38.0% \
Free4D ( ) 96.8% 100.0% 57.9% 60
Ours 96.8% 100.0% 52.4% 15

Table 2: User study results. Percentages indicate user preference.

Comparison Consistency Dynamic Aesthetic
Ours vs. FreedD ( ) 56% / 44% 59% | 41% 53% |/ 47%
Ours vs. 4Real ( ) 79% | 21% 85% 1 15% 93% | 7%
Ours vs. Animate124 ( ) T5% | 25% 56% [/ 44% 100% / 0%
Ours vs. GenXD ( ) 90% / 10% 85% / 15% 100% / 0%

Datasets and Metrics. We conduct evaluations on a collection of images and texts sourced from
the official project pages of the compared methods. To assess the quality of generated novel-view
videos, We report standard VBench metrics ( ), including Consistency (averaged over
subject and background), Dynamic Degree, and Aesthetic Score. Given the lack of a well-established
benchmark for 4D generation, we further conduct a user study involving 23 evaluators to enhance the
reliability of our evaluation.

Implementation Details. We opt for the vanilla Wan2.1 ( ) image-to-video model
as our final base model with a total of 14B parameters'. Most importantly, given the significant
distribution gap between the spatial coordinates XYZ and the original RGB domain, one may carefully
deal with the normalization of the input data to the diffusion model so that the noise scheduling
is balanced across two modalities. Recall our diffusion target is jointly denoising RGB and XYZ
where the noised RGB latent is in the space of KL-regularized VAE whose distribution is close
to a Gaussian Distribution. However, the XYZ coordiante is not normally distributed in the 3D
space, which leads to modality gap during denoising. To bridge this gap, we propose to perform
modality-aware normalization. Specifically, we trace the statistics (mean and standard deviation)
of XYZ domain in the latent space over SK random samples from the training dataset. It results in
p = —0.13 and o = 1.70, which serves as the constant normalization term for XYZ latent during
training and inference. To fully transfer the capability of original image-to-video generation from
the base model to the target image-to-4D task, we train a LoRA with a rank of 64 for the sake of
parameter and data efficiency instead of full-parameter supervised finetuning. The Lora finetuning
is run with a batch size of 32 using an AdamW optimizer. The learning rate is set to 1 x 1074
with a cosine learning rate warmup. The training is distributed on 32 NVIDIA A100 GPUs with 5k
iterations at a spatial resolution of 480 x 720 for each modality. To generate novel-view videos, we
first produce a 4D point cloud representation of the scene using our feed-forward model, and then
render the results using ( ).

5.2 MAIN RESULTS

4D Geometry Generation. As illustrated in Fig. 7, we visualize the paired RGB and XYZ video
generated from a single image. The results demonstrate that our method can simultaneously infer
plausible scene motion and the corresponding 4D geometry from a single image. This high-quality

'https://huggingface.co/Wan-AI/Wan2.1-12V-14B-480P
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geometric representation of dynamic scenes is essential for consistent and photorealistic novel view
synthesis in the subsequent rendering stage.

Novel-View Video Generation. Quantitative results on VBench ( ) are presented
in Table 1. Our method achieves performance comparable to state-of-the-art approaches, and
notably outperforms others in terms of Dynamic Degree. Free4D ( ) benefits from the
proprietary Kling ( ) model for image animation, which contributes to its higher aesthetic
scores. Qualitative comparisons are shown in Fig. 9, where our results demonstrate more significant
and coherent scene dynamics, especially under camera motion. Furthermore, user study results
(Table 2) show that our method is consistently preferred over most baselines in terms of consistency,
dynamics, and aesthetics. Although the results are comparable to Free4D, it is important to note that
the evaluation was conducted on the Free4D test set, which predominantly features object-centric
scenes. In contrast, our method generalizes well to more diverse, in-the-wild scenarios, as illustrated
in Fig. 8. In addition, our method is feed-forward and highly efficient, capable of generating a
dynamic 4D scene within 15 minutes. By comparison, Free4D relies on a time-consuming pipeline,
typically requiring over one hour to produce results.

5.3 ABLATIONS AND ANALYSIS

To validate the effectiveness of our used width-wise fusion strategy and support the analysis presented
in Sec. 4.2, we conduct an ablation study comparing five different fusion designs, as illustrated
in Fig.10. Among these, channel-wise fusion introduces a severe distribution mismatch with the
pretrained prior, often leading to noisy or failed predictions (a.i-a.ii). Batch-wise fusion preserves
unimodal quality but fails to capture cross-modal alignment, yielding inconsistent RGB-XYZ corre-
lation (b.i-b.ii). Frame-wise (c) and height-wise (d) strategies provide moderate improvements, yet
still suffer from suboptimal alignment and visual quality. In contrast, our width-wise fusion brings
corresponding RGB and XYZ tokens closer in the sequence, significantly shortening the cross-modal
interaction distance. This facilitates more effective alignment and yields sharper, more consistent
geometry and appearance across frames, as demonstrated in Fig. 10 (e).

6 CONCLUSION

We present 4DNeX, the first feed-forward framework for generating 4D scene representations from a
single image. Our approach fine-tunes a pretrained video diffusion model to enable efficient image-
to-4D generation. To address the scarcity of training data, we construct 4DNeX-10M, a large-scale
dataset with high-quality pseudo-4D annotations. Furthermore, we propose a unified 6D video
representation that jointly models appearance and geometry, along with a set of simple yet effective
adaptation strategies to repurpose video diffusion models for the 4D generation task. Extensive
experiments demonstrate that 4DNeX generates high-quality dynamic point clouds, providing a
reliable geometric foundation for synthesizing novel-view videos. The resulting videos achieve
competitive performance compared to existing methods, while offering superior efficiency and
generalizability. We hope this work paves the way for scalable and accessible single-image generative
4D world modeling.

Limitations and Future Work While 4DNeX demonstrates promising results in single-image 4D
generation, several limitations remain. First, our method relies on pseudo-4D annotations for supervi-
sion, which may introduce noise or inconsistencies, particularly in fine-grained geometry or long-term
temporal coherence. Introducing high-quality real-world or synthetic dataset would be fruitful for
general 4D modeling. Second, although the image-driven generated results are 4D-grounded, control-
labilities over lighting, fine-grained motion and physical property are still lacking. Third, the unified
6D representation, while effective, assumes relatively clean input images and may degrade under
occlusions, extreme lighting conditions, or cluttered backgrounds. Future work includes improving
temporal modeling with explicit world priors, incorporating real-world 4D ground-truth data when
available, and extending our framework to handle multi-object or interactive scenes. Additionally,
integrating multi-modal inputs like text or audio could further enhance controllability and scene diver-
sity.
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APPENDIX

A DETAILS OF USER STUDY

User Study: Comparison with Existing Methods. To evaluate the effectiveness of our method, we
conducted a user study comparing it against several existing approaches. We collected a total of 74
video pairs, each generated from the same input image or text prompt to ensure fair comparisons.
Competing methods included Free4D ( ), 4Real ( ), GenXD

( ), and Animate124 ( ). All comparison videos were obtained from their official
project pages. The study was conducted online, and a screenshot of the evaluation interface is
shown in Fig. A. Participants were asked to assess each video pair across three criteria: Consistency,
Dynamics, and Aesthetics. For each criterion, they were instructed to choose the video they perceived
as better. If a comparison was too difficult to judge, they could skip to the next example without
selecting an answer. All responses were collected anonymously, and no personal data were recorded
during the study.

B DETAILS OF VBENCH METRICS

To comprehensively evaluate the quality of our synthesized novel-view videos, we adopt a suite of
metrics introduced in VBench ( ), covering three key aspects: Consistency (for both
subject and background), Degree of Motion, and Aesthetic Quality.

Subject / Background Consistency. This metric assesses how consistently both the main subject
(e.g., human, vehicle, animal) and the surrounding background are maintained throughout the video.
It leverages feature similarity across frames using DINO ( ) for the foreground and
CLIP ( ) for the background. DINO focuses on preserving subject identity by
comparing learned visual representations, while CLIP captures broader scene coherence. The average
of both provides a balanced view of overall temporal consistency.

Degree of Motion. To avoid favoring overly static videos that may perform well on consistency
metrics, we include a motion-aware measure. Specifically, RAFT ( ) is applied
to estimate optical flow, and the Dynamic Degree is computed by averaging the top 5% of largest
flow magnitudes. This helps emphasize prominent movements, such as object actions or camera
shifts, while de-emphasizing negligible or noisy motions, ensuring a more meaningful evaluation of
dynamics.

Aesthetic Quality. To reflect the perceived visual appeal of the generated videos, we utilize the
LAION Aesthetic Predictor ( ), a lightweight regressor trained atop CLIP features
to score image aesthetics on a scale from 1 to 10. It considers multiple factors, including color
composition, realism, layout, and overall artistic impression. We apply this predictor to each frame
and report the average score as the final Aesthetic Quality metric.

B.1 CROSS-DOMAIN SELF-ATTENTION (CDSA)

As introduced in Sec. 4.2, we introduce a Cross-Domain Self-Attention (CDSA) module to enhance
the alignment between RGB and XYZ modalities, particularly under the batch-wise fusion strategy.
Figure B illustrates the architecture of this module.

As shown in the left part of Fig. B, the CDSA block is inserted between the standard self-attention
and cross-attention layers within a transformer block. It explicitly enables bidirectional interaction
between RGB and XYZ tokens through attention mechanisms—allowing RGB tokens to attend to
XYZ tokens and vice versa—thus facilitating cross-modal information exchange.

To balance performance and efficiency, we implement and compare two versions of CDSA:

* Full Version: All RGB and XYZ tokens participate in dense cross-domain attention. This
version achieves stronger modality interaction at the cost of higher memory and computation.

» Sparse Version: Token interactions are restricted to spatially corresponding positions be-
tween RGB and XYZ sequences. This reduces overhead while retaining most of the
alignment benefits.
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Compare Method 1 & Method 2
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Figure A: User study interface. Participants were shown an input prompt and two generated videos
from different methods. They were asked to compare the results based on Consistency, Dynamics
and Aesthetics. Each question allowed skipping if the difference was hard to judge.
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Figure B: Architecture of the Cross-Domain Self-Attention (CDSA) module. The CDSA block
is inserted between self-attention and cross-attention layers to facilitate bidirectional interaction
between RGB and XYZ modalities. We explore two variants: the Full Version, where all tokens
interact densely, and the Sparse Version, where attention is restricted to spatially corresponding token
pairs. This design enables effective cross-modal alignment with different trade-offs in efficiency and
performance.

While both versions aim to bridge the modality gap by promoting fine-grained token-level communi-
cation, our experiments reveal that under the batch-wise fusion setting (Fig. 4 (b.ii)), even with CDSA,
the overall cross-modal alignment remains limited. This is primarily due to the spatial separation of
RGB and XYZ tokens, which contrasts with the more effective width-wise fusion strategy (Fig. 4 (e))
where the interaction distance is inherently shorter.
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